PERFORMANCE

Range... 0 - 200 ppm
Sensitivity (see note) 250 - 650 nA/ppm Cl₂
Zero in air at 20 °C..<±0.4 ppm Cl₂
Zero deviation (-20 to +40°C).............0 to -0.3 ppm Cl₂
Resolution...0.1 ppm Cl₂
Expected lifetime ...2 years
Linearity ... linear across range
Response time, t₉₀...<30 s
Temperature range –20 to +50 °C
Pressure range... 90 – 110 kPa (nominal)
Humidity range......................15 - 90% RH (non-condensing)
Long-term output drift <2% change in output per month
Operating circuit............... see Electrochemical Toxic Sensor

Note: This output current is negative. This is because the sensor reaction is a reduction of the target gas.

OPERATING CONDITIONS

Temperature range ... –20 to +50 °C
Operating humidity........... 15 - 90% RH (non-condensing)
Pressure range 90 – 110 kPa (nominal)
Operating circuit............... see Electrochemical Toxic Sensor

Applied potential ..0 V
Storage life........... 6 months in original packaging (0 - 25 °C)

PHYSICAL CHARACTERISTICS

Label colour ...silver
Weight... 6 g
Dimensions...see outline

This device is designed to be RoHS compliant.

CROSS-SENSITIVITY DATA

<table>
<thead>
<tr>
<th>GAS</th>
<th>Concentration (ppm)</th>
<th>Sensor Response (As ppm Cl₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Dioxide</td>
<td>10,000</td>
<td>0</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Chlorine Dioxide</td>
<td>1</td>
<td>3.5</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>3000</td>
<td>0</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>20</td>
<td>-4</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Ammonia</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Nitric Oxide</td>
<td>35</td>
<td>0</td>
</tr>
</tbody>
</table>
TEMPERATURE DEPENDENCE

EC4-200-Cl2 Graph of Zero vs Temperatures

EC4-200-Cl2 Graph of Net Sensitivity vs Temperature